Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cytotechnology ; 76(1): 69-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38304624

RESUMEN

Bioprocess development benefits from kinetic models in many aspects, including scale-up, optimization, and process understanding. However, current models are unable to simulate the production process of a coxsackievirus A6 (CVA6) virus-like particle (VLP) vaccine using Chinese hamster ovary cell culture. In this study, a novel kinetic model was constructed, correlating (1) cell growth, death, and lysis kinetics, (2) metabolism of major metabolites, and (3) CVA6 VLP production. To construct the model, two batches of a laboratory-scale 2 L bioreactor cell culture were prepared and various pH shift strategies were applied to examine the effect of pH shift. The proposed model described the experimental data under various conditions with high accuracy and quantified the effect of pH shift. Next, cell culture performance with various pH shift timings was predicted by the calibrated model. A trade-off relationship was found between product yield and quality. Consequently, multiple objective optimization was performed by integrating desirability methodology with model simulation. Finally, the optimal operating conditions that balanced product yield and quality were predicted. In general, the proposed model improved the process understanding and enabled in silico process development of a CVA6 VLP vaccine. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00598-8.

2.
J Biosci Bioeng ; 137(1): 54-63, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981489

RESUMEN

Chinese hamster ovary (CHO) cells are the de facto standard host cells for biopharmaceuticals, and there is great interest in developing methods for constructing stable production cell lines. In this study, clones with a wide chromosome number distribution were selected from isolated antibody-producing strains, and subclones obtained from these clones were evaluated. The transgene copy number varied between the subclones. Even among subclones with similar copy numbers of antibody genes and maintained insertion sites, clones with different productivity were generated. Although the chromosome number distribution differed between these subclones, there was no correlation between the variability in chromosome number after cloning (genome instability) and productivity. Most of the subclones obtained from a parental strain with a wide chromosome number had the same wide chromosome number distribution as the parental strain. Less frequently, cells with less variation (remaining in one distribution) in chromosome number were isolated from cells with a wide chromosome number distribution, from which subclones with less variation in chromosome number were obtained when subcloning was performed again. These results imply that the characteristics of clones with chromosomal instability are inherited by subclones, and thus provide a better understanding of cell line stability/instability.


Asunto(s)
Cromosomas , Inestabilidad Genómica , Cricetinae , Animales , Células CHO , Cricetulus , Células Clonales , Cromosomas/genética , Proteínas Recombinantes/genética , Inestabilidad Genómica/genética
3.
Mol Ther Methods Clin Dev ; 31: 101142, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38027055

RESUMEN

Studies of recombinant adeno-associated virus (rAAV) revealed the mixture of full particles with different densities in rAAV. There are no conclusive results because of the lack of quantitative stoichiometric viral proteins, encapsidated DNA, and particle level analyses. We report the first comprehensive characterization of low- and high-density rAAV serotype 2 particles. Capillary gel electrophoresis showed high-density particles possessing a designed DNA encapsidated in the capsid composed of (VP1 + VP2)/VP3 = 0.27, whereas low-density particles have the same DNA but with a different capsid composition of (VP1 + VP2)/VP3 = 0.31, supported by sedimentation velocity-analytical ultracentrifugation and charge detection-mass spectrometry. In vitro analysis demonstrated that the low-density particles had 8.9% higher transduction efficacy than that of the particles before fractionation. Further, based on our recent findings of VP3 clip, we created rAAV2 single amino acid variants of the transcription start methionine of VP3 (M203V) and VP3 clip (M211V). The rAAV2-M203V variant had homogeneous particles with higher (VP1+VP2)/VP3 values (0.35) and demonstrated 24.7% higher transduction efficacy compared with the wild type. This study successfully provided highly functional rAAV by the extensive fractionation from the mixture of rAAV2 full particles or by the single amino acid replacement.

4.
Biotechnol Bioeng ; 120(3): 659-673, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36385243

RESUMEN

Chinese hamster ovary (CHO) cells are major host cells for biopharmaceuticals. During culture, the chromosome number of CHO cells alters spontaneously. Here, we investigated the effects of artificial changes in the chromosome number on productivity. When cell fusion between antibody-producing CHO-K1-derived cells was induced, we observed a wide range of aneuploidy that was not detected in controls. In particular, antibody productivities were high in clone-derived cell populations that retained a diverse chromosome number distribution. We also induced aneuploid cells using 3-aminobenzamide that causes chromosome non-disjunction. After induction of aneuploidy by 3-aminobenzamide, cells with an increased chromosome number were isolated, but cells with a decreased chromosome number could not be isolated. When antibody expression vectors were introduced into these isolated clones, productivity tended to increase in cells with an increased chromosome number. Further analysis was carried out by focusing on clone 5E8 with an average chromosome number of 37. When 5E8 cells were used as host, the productivity of multiple antibodies, including difficult-to-express antibodies, was improved compared with CHO-K1 cells. The copies of exogenous genes integrated into the genome were significantly increased in 5E8 cells. These findings expand the possibilities for host cell selection and contribute to the efficient construction of cell lines for recombinant protein production.


Asunto(s)
Aneuploidia , Anticuerpos Monoclonales , Cricetinae , Animales , Cricetulus , Células CHO , Transfección , Proteínas Recombinantes/genética , Cromosomas/química
5.
J Biosci Bioeng ; 136(5): 400-406, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35963666

RESUMEN

Therapeutic antibodies are attractive biopharmaceuticals because of their high therapeutic effects, fewer side effects, and prolonged half-life in the blood. Chinese hamster ovary (CHO) cells are the most widely used host cell lines to produce therapeutic antibodies in industries. High-producing recombinant CHO cells can be established via overexpression of endogenous proteins. In this study, we focused on the intracellular traffic of an antibody-producing CHO cell line, CHO-HcD6. Assembled antibodies were accumulated in the endoplasmic reticulum (ER) in the cell. We hypothesized that the accumulation was due to the insufficient number of cargo receptors in the cell and focused on a cargo receptor, the ERGIC-53-MCFD2 complex, which transports expressed proteins from the ER to the Golgi apparatus. Overexpression of the cargo receptor transport was expected to improve antibody production. Exogenous ERGIC-53 and MCFD2 were transfected into CHO-HcD6 cells, and overexpressing CHO-HcD6 cells were constructed. As a result of overexpression, antibody productivity increased in batch cultivation. However, the chase assay results and immunofluorescence microscopic observations revealed intracellular IgG accumulation in the overexpressing cells. These results suggest that overexpression of cargo receptors not only promoted extracellular secretion but also enhanced the retention of intracellular antibodies.

6.
J Biosci Bioeng ; 133(6): 509-514, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35382990

RESUMEN

The industrial use of living organisms for bioproduction of valued substances has been accomplished mostly using microorganisms. To produce high-value bioproducts such as antibodies that require glycosylation modification for better performance, animal cells have been recently gaining attention in bioengineering because microorganisms are unsuitable for producing such substances. Furthermore, animal cells are now classified as products because a large number of cells are required for use in regenerative medicine. In this article, we review animal cell technologies and the use of animal cells, focusing on useable cell generation and large-scale production of animal cells. We review recent advance in mammalian cell line development because this is the first step in the production of recombinant proteins, and it largely affects the efficacy of the production. We next review genetic engineering technology focusing on CRISPR-Cas system as well as surrounding technologies as these methods have been gaining increasing attention in areas that use animal cells. We further review technologies relating to bioreactors used in the context of animal cells because they are essential for the mass production of target products. We also review tissue engineering technology because tissue engineering is one of the main exits for mass-produced cells; in combination with genetic engineering technology, it can prove to be a promising treatment for patients with genetic diseases after the establishment of induced pluripotent stem cell technology. The technologies highlighted in this review cover brief outline of the recent animal cell technologies related to industrial and medical applications.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Genética , Animales , Reactores Biológicos , Línea Celular , Edición Génica/métodos , Humanos , Mamíferos/genética , Medicina Regenerativa
7.
Cytotechnology ; 74(1): 163-179, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35185292

RESUMEN

Although antibodies have attracted attention as next-generation biopharmaceuticals, the costs of purifying the products and of arranging the environment for cell cultivation are high. Therefore, there is a need to increase antibody efficacy and improve product quality as much as possible. Since antibodies are glycoproteins, their glycan structures have been found to affect the function of antibodies. Especially, afucosylation of the N-linked glycan in the Fc region is known to significantly increase antibody-dependent cellular cytotoxicity. In this study, we established a double-mutant ΔGMDΔGFT in which GDP-mannose 4,6-dehydratase and GDP-fucose transporter were knocked out in Chinese hamster ovary cells, a platform for biopharmaceutical protein production. By adapting ΔGMDΔGFT cells to serum-free medium and constructing suspension-cultured cells, we established host CHO cells with no detected fucosylated glycans and succeeded in production of afucosylated antibodies. We also demonstrated that, in culture in the presence of serum, fucosylation occurs due to contamination from serum components. Furthermore, we found that afucosylation of glycans does not affect cell growth after adaptation to serum-free medium as compared to wild-type CHO cells growth and does not significantly affect the expression levels of other endogenous fucose metabolism-related enzyme genes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10616-021-00501-3.

8.
Traffic ; 22(12): 425-438, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34536241

RESUMEN

GRP94 (glucose-regulated protein 94) is a well-studied chaperone with a lysine, aspartic acid, glutamic acid and leucine (KDEL) motif at its C-terminal, which is responsible for GRP94 localization in the endoplasmic reticulum (ER). GRP94 is upregulated during ER stress to help fold unfolded proteins or direct proteins to ER-associated degradation. In a previous study, engineered GRP94 without the KDEL motif stimulated a powerful immune response in vaccine cells. In this report, we show that endogenous GRP94 is naturally secreted into the medium in a truncated form that lacks the KDEL motif in Chinese hamster ovary cells. The secretion of the truncated form of GRP94 was stimulated by the induction of ER stress. These truncations prevent GRP94 recognition by KDEL receptors and retention inside the cell. This study sheds light on a potential trafficking phenomenon during the unfolded protein response that may help understand the functional role of GRP94 as a trafficking molecule.


Asunto(s)
Estrés del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas de la Membrana
9.
J Biosci Bioeng ; 132(3): 302-309, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34119424

RESUMEN

Cartilaginous fishes such as sharks have adaptive immune systems based on immunoglobulins similar to those in mammals. During their evolution, cartilaginous fishes individually have acquired their adaptive immune system called immunoglobulin new antigen receptor (IgNARs). IgNARs maintain their functions in the harsh environment of shark serum, which contains a high concentration of urea to prevent water loss in seawater. Therefore, IgNARs have high structural stability, and are expected to be used as next-generation antibodies in applications different from those of conventional IgG antibodies. However, no recombinant expression system for IgNAR, which has a molecular weight of approximately 147 kDa as a dimer and multiple N-glycosylation sites, has yet been constructed. This has stalled research into IgNAR development. Here, we constructed a recombinant expression system for IgNAR using Chinese hamster ovary (CHO) cells, widely used as hosts for IgG antibody production. Using this system, IgNAR was successfully expressed and purified as a human IgG Fc fusion protein and showed antigen-binding ability. After Protein A affinity purification, followed by specific cleavage and removal of the human Fc-region, the final yield of IgNAR was 1.07 mg/L-medium. Moreover, this CHO cell expression system modified IgNAR with various N-glycans, including high-mannose and complex types. This expression system will allow us to analyze the structure, physicochemical properties, and biological functions of IgNAR. This fundamental information will advance the development of IgNARs for industrial and biotechnological applications.


Asunto(s)
Tiburones , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Células CHO , Cricetinae , Cricetulus , Humanos , Receptores de Antígenos , Tiburones/genética
10.
Sci Rep ; 10(1): 17612, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077772

RESUMEN

Chinese hamster (Cricetulus griseus) ovary-derived Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the industrial production of recombinant therapeutics because of their ability to fold, assemble, and perform post-translational modifications, such as glycosylation, on proteins. They are also valuable for their ability to grow in serum-free suspension cultures. In this study, we established a cell line derived from lung tissue of Chinese hamsters, named Chinese hamster lung (CHL)-YN cells. The biosafety of CHL-YN cells was confirmed by in vitro sterility testing, mycoplasma detection, and reverse transcriptase assays. One of the key characteristics of CHL-YN cells was their doubling time of 8.1 h in chemically defined culture medium; thus, they proliferate much faster than conventional CHO cells and general mammalian cells. Transgenes could be introduced into CHL-YN cells with high efficiency. Finally, between 50% to > 100% of the amount of glycosylated immunoglobulin G (IgG)1 produced by CHO-K1 cells was produced by CHL-YN cells over a shorter period of time. In summary, fast-growing CHL-YN cells are a unique cell line for producing recombinant proteins.


Asunto(s)
Proliferación Celular/fisiología , Pulmón/citología , Proteínas Recombinantes/metabolismo , Animales , Productos Biológicos , Línea Celular , Cricetinae , Cricetulus , Medios de Cultivo
11.
J Biosci Bioeng ; 129(1): 121-128, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31303495

RESUMEN

Chromosomes in Chinese hamster ovary (CHO) cells are labile. We have shown that high-chromosome-number CHO cells have greater potential to become robust producers of recombinant proteins. One explanation being the increase in transgene integration sites. However, high-chromosome-number cell clones produce more IgG3 following culture of single-cell clones, even under conditions that yield the same number of integrations as cells with normal chromosome numbers. Here, we characterized high-chromosome-number cells by transcriptome analysis. RNA standards were used to normalize transcriptomes of cells that had different chromosome numbers. Our results demonstrate that the mRNA ratio of ß-actin and many other genes in high-chromosome-number cells to that in normal-chromosome-number cells per cell (normalized to RNA standards) was smaller than the equivalent genomic size and cell volume ratios. Many genes encoding membrane proteins are more highly expressed in high-chromosome-number cells, probably due to differences in cell size caused by the increase in chromosomes. In addition, genes related to histone modification and lipid metabolism are differentially expressed. The reduced transcript level required per protein produced in total and the different intracellular signal transductions might be key factors for antibody production.


Asunto(s)
Células CHO/metabolismo , Cromosomas/genética , Inmunoglobulina G/biosíntesis , ARN Mensajero/genética , Animales , Células CHO/citología , Cromosomas/metabolismo , Cricetinae , Cricetulus , Expresión Génica , Inmunoglobulina G/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Transcriptoma
12.
Cytotechnology ; 71(1): 305-316, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30637508

RESUMEN

The Chinese hamster ovary (CHO) cell line is the most widely used host cell for therapeutic antibody production. Although its productivity has been improved by various strategies to satisfy the growing global demand, some difficult-to-express (DTE) antibodies remain at low secretion levels. To improve the production of various therapeutic antibodies, it is necessary to determine possible rate-limiting steps in DTE antibody secretion in comparison with other high IgG producers. Here, we analyzed the protein secretion process in CHO cells producing the DTE immunoglobulin G (IgG) infliximab. The results from chase assays using a translation inhibitor revealed that infliximab secretion could be nearly completed within 2 h, at which time the cells still retained about 40% of heavy chains and 65% of light chains. Using fluorescent microscopy, we observed that these IgG chains remained in the endoplasmic reticulum and Golgi apparatus. The cells inefficiently form fully assembled heterodimer IgG by making LC aggregates, which may be the most serious bottleneck in the production of DTE infliximab compared with other IgG high producers. Our study could contribute to establish the common strategy for constructing DTE high-producer cells on the basis of rate-limiting step analysis.

13.
Cytotechnology ; 71(1): 193-207, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30610509

RESUMEN

Biopharmaceuticals represented by immunoglobulin G (IgG) are produced by the cultivation of recombinant animal cells, especially Chinese hamster ovary (CHO) cells. It is thought that the intracellular secretion process of IgG is a bottleneck in the production of biopharmaceuticals. Many studies on the regulation of endogenous secretory protein expression levels have shown improved productivity. However, these strategies have not universally improved the productivity of various proteins. A more rational and efficient establishment of high producer cells is required based on an understanding of the secretory processes in IgG producing CHO cells. In this study, a CHO cell line producing humanized IgG1, which was genetically fused with fluorescent proteins, was established to directly analyze intracellular secretion. The relationship between the amount of intracellular and secreted IgG was analyzed at the single cell level by an automated single-cell analysis and isolation system equipped with dual color fluorescent filters. The amounts of intracellular and secreted IgG showed a weak positive correlation. The amount of secreted IgG analyzed by the system showed a weak negative linear correlation with the specific growth of isolated clones. An immunofluorescent microscopy study showed that the established clones could be used to analyze the intracellular secretion bottleneck. This is the first study to report the use of fluorescent protein fusion IgG as a tool to analyze the secretion of recombinant CHO cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA